INFLUENCE OF THICKNESS AND WALL THERMAL
CONDUCTIVITY ON HEAT TRANSFER IN LAMINAR
NATURAL CONVECTION OF AIR IN A CUBICAL CAVITY

L. B. Gdalevich, E. F. Nogotov, UDC 536.252
and V. E, Fertman

Results are presented for a numerical investigation of the influence of finite thermal conduc-
tivity and wall thickness on heat transfer in a vertical cavity of rectangular cross section,
Theoretical formulas are obtained for determining the total heat flux.

The flow and heat transfer in a vertical cavity of rectangular cross section, under natural convection
conditions (NC), have been studied by many authors [1-6]. As a rule, the temperature conditions at the body—
liquid interface (the temperature or the heat flux) are assumed to be known beforehand. However, this ap-
proach is not always satisfactory [7]. The agsignment of surface temperature under steady-state heat transfer
is valid only in the case of infinite body thermal conductivity, whereas in the real physical situation the walls
have finite thermal conductivity.and thickness, Under unsteady heat transfer the law for variation of surface
temperature with time is not known beforehand, Therefore, in the design and construction of technical instal-
lations, the structure and the liquid interact appreciably, it is desirable to treat the thermal problem as re-
lated, i.e., to seek a simultaneous solution of the equations of convection of the liquid and the equations for
thermal conductivity in the body, with the temperatures and heat fluxes, which are not known beforehand, [13]
equal at the phase interface surface. The criterion for the interaction of the temperature field on the body
and of the liquid washing it under NC conditions is the complex dimensionless group Br, the Brown number,
which is a quantity proportional to the ratio of the thermal resistance of the washed wall to the thermal resis-
tance of the liquid 8, 11]:

k
Br — —’% Pri/+Gri/t, 102 GrPr < 2- 107,

8
where x is the distance along the wall in the flow direction; § is the wall thickness; and k¢(kg) is the thermal
conductivity of the liquid (the wall), It is assumed that in the region Br > 0.02 the problem must be solved in
the joint formulation [8].

1. In this paper we use numerical modeling to investigate two-dimensional laminar NC in a rectangular
cavity filled with air, with solid impermeable walls,

Z

"'@"’ Fig. 1. Physical model.
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Fig. 2. The temperature and velocity profiles as a function of the coupling pa~
rameter a [0] x4 =1, Gry,=10°, y =H/(2L), H/L =6]. The triangles show
{the stream function), and the points show § (the temperature).

Fig. 3. The local Nusselt number as a function of y for o =0.14; H/L =4;
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Fig. 4. Heat transfer as a function of o (H/L) [Gr, =
10%, y = H/(2L), 0=y =11,

The physical model of the problem is illustrated in Fig. 1. The left vertical wall is a flat plate of finite
thickness. The top and bottom boundaries of the cavity [y' =0, y' = H] are thermally insulated, and the verti-
cal boundaries [x' =—6, x' = L] are kept at constant and different temperatures (T, = T).

If we restrict attention to the case where the transverse thermal conductivity (in the direction x') in the
plate [—6 = x' <0, 0 <y' < H] is considerably greater than the longitudinal conductivity (in the direction y'),
then the conditions for the heat fluxes to be equal at the interface surface (x' =0) may be reduced to the bound-
ary condition

T (0, ¢') — k,
ox’ 8

k! [T (0’ y,)—To]-

Therefore, the boundary problem considered (in dimensionless variables) can be formulated as follows:
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Fig. 5. The average Nusselt number as a function of
H/L [a)f|,4 =1, Gry,= 10%; b) 6|x~1 =1, o =0.11].
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Here as the scales for distance, the stream function, and the vorticity we choose the cavity width L, the
kinematic viscosity v and the quantity (L?/v), respectively. The dimensionless temperature is = (T—T,)/
AT, AT =Tpax—Tmin. In system (1) we have the dimensionless groups, the Prandtl number Pr = v/a, and
the Grashof number Gry, =ggATL%/v?, and also the coupling parameter o = (kg/kg) % (6/L), which describes
the influence of the finite conductivity (kf/kg) of the solid and liquid phases and the geometric factor (6/L) on
the flow and the heat transfer in the rectangular cavity heated from the side.

The complete solution of the coupled problem (1) can be defined by the functional dependence

0 : H
— 2
¢} [(x,y,Gr,_,a, L)' 2)

2. System (1) was solved numerically by the finite-differences method. A monotonic conservative
difference scheme of second-order accuracy [6] was used. A steady-state solution was found by the iterative
Zeidel process. Relaxation parameters, for which an optimal value was determined by experimental calcula-
tions, were used to accelerate the convergence of iterations in the vorticity and stream function equation. The
calculations were carried out in a uniform mesh with a spatial step of h =1/20.

3. The following matters were clarified from an analysis of the numerical data obtained for the values
Gry, =10%-107, o =0; 0.07; 0.11; 0.14, H/L =1; 2; 4; 6; 10 at a fixed Prandtl number of Pr = 0.72.

The influence of Grashof number Gry, (at fixed a) on the thermoconvective processes in the cavity, elu-
cidated by solving the coupled problem (1), is close to the results obtained earlier [3, 5] in the solution of the
analogous problem in the uncoupled form. Increase in Grashof number leads to intensification of convection,
the generation of a constant vertical temperature gradient and subsequent change of thermal conditions in the
cavity. The regime close to a heat-conduction condition (Gry, <104 is replaced by a boundary layer regime
(Gryp, ~ 10%. The isotherms are almost horizontal in the center of the cavity. Further increase in Grashof

number (Gry, >210°) leads to curvature of the isotherms in the center and the appearance of secondary circula-
tory flows described in detail in [9].

We now consider the influence of the coupling of the heat transfer on the intensity of convective motion
and on the temperature field structure. With increase in the coupling parameter ¢ for a given temperature
drop (AT =T—T,), the convective intensity decreases, e.g., for ¢ ~ 0.1, by 20% in comparison with o = 0.



TABLE 1. Theoretical Formulas for the Average Nusselt Number

'3 H/L=1 HiL=2, 4, 6
0 Nu, =0,225(Gr,)?-243  (3') Nu,=0,226(Gr, )°-245 (H/L)=%+155 (37
0,07 Nu, =0,283(Gr))%" 19 (4) Nu,=0,267(Gr )% 212 (H/L)=0+12% (47)
0,14 Nuy=0,337(Grp) %' (5) Nu,=0,332(Gr)% 175 (/L) 0+ 10 (57)

The isotherm field undergoes considerable changes here. A decrease in the intensity of convective motion
with increase of o leads to an increase in the liquid temperature., A typical example of the influence of o
(@ =0-0.11; Gry, =10° H/L =6;y = H/(2L); 0x=, =1) is shown in Fig. 2.

Analysis of the distribution of local heat transfer Nuy, = —86/8x]y—, on the surface x = 0 for 6 lx=1 =1

(Ty > Tg)y H/L =2; 4; 6; 10, Gry, =10%107 and with o fixed shows that: for small Grashof number (Gry, ~ 10%)
the value of Nuj, almost does not vary with height of the wall; for values Gry, =10%-10', H/@4L) <y =< H/(7L)
there is a variation Nuj, = 0.45y +{(Gry). An increase in Gry is accompanied by an increase in Nuy, over
practically the entire height of the wall. On the cold wall [x =0, 0 =y = H/L; ¢ |x=1 = 1] the quantity Nuy,
reaches a maximum near the top of the wall, since here the temperature gradients are greatest because of
flow out from the wall [x =1, 0 =y =< H/L] of liquid which has been heated more; the quantity Nuy, depends
slightly on the ratio H/L. A typical distribution of local heat flux is shown in Fig. 3.

It can be shown by the methods of similarity theory [10] that, in the general case,
Nu, = @ (=, H/L)(PrGr,)!' /4.

Calculations made for x =0, y = H/(2L), Gry, =10% Pr =0.72, 6|, _, =1 show that: the dependence of
the heat transfer ¢(a, H/L) = Nur/ (PrGrL)1/ 4 on H/L, with o as a parameter, is linear (Fig. 4a); if we take
H/L as a parameter, a monotonic decrease of ¢ (@, H/L) with increase of o is observed (Fig. 4b).

L

We shall describe the heat transfer to the cavity in terms of an average Nusselt number Nu, = —
H/L

[00/0x] |,_ody . The decrease-in intensity of convection, observed with increase in the coupling parameter

1] — —

a, leads to a reduction in the average Nusselt number Nuj . Here the average Nussel!’.ﬂxmber Nuy, depends
substantially on the cavity geometry and on the Gry, number. Typical curves showing Nujy, as a function of
(H/L), Gry,, and o are shown in Fig. 5.

The relation between logNuy, and logGry, is almost linear, and for 10° < Grp, = 10%, H/L =2, 4, 6, and
o fixed one obtains parallel straight lines. Thus, one can constructa formula ofthetype Nuy, =A(Gry)B®/L)C.
For the case H/L =1.10% =< Gry, = 105, o =0; 0.07; 0.14 the least-squares method was used to obtain interpola-
tion relatiglls of the type WL = A(GrL)B. The results are shown in Table 1. Comparison of the calculated
values of Nuy, with the Egs. (3') and (3"), obtained here for a =0, with the values calculated using the Elder
formula [2)

Nu, = 0.231(G)0%, Pr=0.733, H/L = 1, Gr,Pr>4.10° 3)
and the Yakob formula [12]
Nu, = 0.18 (Gr,)0+25 (H/L)y=0-11',  H/L =2; 10, 10°< Gr, < 10° @

show that values of Nup, from Eq. (3') fall about 8-10% lower, while values of Nu, from Eq. (3") fall about
9-11% above the values of Nuj, calculated from Egs. (3) and (4), respectively.

Calculations using Eqgs. (3")-(5") show that, for all values of Gry,, with increase of the coupling para-
meter o, the average Nusselt humber ITu—L decreases. For example, if the value of Nuy,, for Gry, = 10%,
from Eq. (3'), and o =0 (Br =0), is taken as 100%, then the values of NTL from Egs. (4') and (5'), corres-
ponding to ¢ =0.07 (Br =1.14), o« =0.14 (Br =2.27), are 70 and 58%, respectively.
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